3.505 \(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac{5}{2}}(c+d x) \, dx\)

Optimal. Leaf size=145 \[ \frac{2 a^2 (4 A+3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{2 a^{3/2} B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 a A \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d} \]

[Out]

(2*a^(3/2)*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d
+ (2*a^2*(4*A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*A*Sqrt[a + a*Cos[c
 + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.450702, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2961, 2975, 2980, 2774, 216} \[ \frac{2 a^2 (4 A+3 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{2 a^{3/2} B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 a A \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2),x]

[Out]

(2*a^(3/2)*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d
+ (2*a^2*(4*A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*A*Sqrt[a + a*Cos[c
 + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

Rule 2961

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Sin[e + f*x])^m*(
c + d*Sin[e + f*x])^n)/(g*Sin[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac{5}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{1}{3} \left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)} \left (\frac{1}{2} a (4 A+3 B)+\frac{3}{2} a B \cos (c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 (4 A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\left (a B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^2 (4 A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}-\frac{\left (2 a B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{2 a^{3/2} B \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{d}+\frac{2 a^2 (4 A+3 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a A \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.394888, size = 106, normalized size = 0.73 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{3}{2}}(c+d x) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right ) ((5 A+3 B) \cos (c+d x)+A)+3 \sqrt{2} B \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right ) \cos ^{\frac{3}{2}}(c+d x)\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(3*Sqrt[2]*B*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]
]*Cos[c + d*x]^(3/2) + 2*(A + (5*A + 3*B)*Cos[c + d*x])*Sin[(c + d*x)/2]))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 0.666, size = 287, normalized size = 2. \begin{align*} -{\frac{2\,\cos \left ( dx+c \right ) a \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{3\,d \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) ^{2}} \left ( 3\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}+6\,B\cos \left ( dx+c \right ) \arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}+3\,B\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}+5\,A\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +3\,B\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +A\sin \left ( dx+c \right ) \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x)

[Out]

-2/3/d*a*(3*B*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*(cos(d*x+c)/(1+cos(
d*x+c)))^(3/2)+6*B*cos(d*x+c)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*(cos(d*x+c)/(1+c
os(d*x+c)))^(3/2)+3*B*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c
)))^(3/2)+5*A*cos(d*x+c)*sin(d*x+c)+3*B*sin(d*x+c)*cos(d*x+c)+A*sin(d*x+c))*cos(d*x+c)*sin(d*x+c)^2*(1/cos(d*x
+c))^(5/2)*(a*(1+cos(d*x+c)))^(1/2)/(-1+cos(d*x+c))/(1+cos(d*x+c))^2

________________________________________________________________________________________

Maxima [B]  time = 2.87032, size = 1974, normalized size = 13.61 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/6*(3*(6*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^(3/2)*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(
1/4)*((2*a*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - a*sin(2*d*x + 2*c) - 2*(a*c
os(2*d*x + 2*c) + a)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) + 1)) + (2*a*sin(2*d*x + 2*c)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + a*cos(2*d
*x + 2*c) + 2*(a*cos(2*d*x + 2*c) + a)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + a)*sin(3/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + ((a*cos(2*d*x + 2*c)^2 + a*sin(2*d*x + 2*c)^2 + 2*a*cos
(2*d*x + 2*c) + a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(
2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - (a*cos(2*d*x + 2*c)^2 + a*sin(2
*d*x + 2*c)^2 + 2*a*cos(2*d*x + 2*c) + a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - (a*cos(2
*d*x + 2*c)^2 + a*sin(2*d*x + 2*c)^2 + 2*a*cos(2*d*x + 2*c) + a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
1)) + 1) + (a*cos(2*d*x + 2*c)^2 + a*sin(2*d*x + 2*c)^2 + 2*a*cos(2*d*x + 2*c) + a)*arctan2((cos(2*d*x + 2*c)^
2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*B/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) + 8
*(3*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 5*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 +
2*sqrt(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)*A/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*
x + c)/(cos(d*x + c) + 1) + 1)^(5/2)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.61521, size = 355, normalized size = 2.45 \begin{align*} -\frac{2 \,{\left (3 \,{\left (B a \cos \left (d x + c\right )^{2} + B a \cos \left (d x + c\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{{\left ({\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + A a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}\right )}}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

-2/3*(3*(B*a*cos(d*x + c)^2 + B*a*cos(d*x + c))*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sq
rt(a)*sin(d*x + c))) - ((5*A + 3*B)*a*cos(d*x + c) + A*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x +
 c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(5/2), x)